Wednesday, March 30, 2011

Admin :D

Admin : Khairil as a creator
              Rifqi as a creator
              Azis as a creator
              Fadil as a creator

Twitter : Khairil : @khairilanshar
               Rifqi : @rifqiwisnu
               Azis : @azispramanew 
               Fadil : @fadil0712 / fadilaja@yahoo.com

Facebook : Khairil : irillucu@yahoo.co.id
                   Rifqi : rifqiwisnu@yahoo.com
                   Azis : azis_prama@yahoo.co.id
                   Fadhil : fadilafganisme@yahoo.co.id


Thanks For The Reader and don't Forget to comment and vote Thanks 
by: admin

Sunday, March 20, 2011

PENEBANGAN LIAR

Penebangan liar memiliki dampak yang menghancurkan hutan. Efeknya termasuk deforestasi, hilangnya keanekaragaman hayati dan perubahan iklim mendorong. Hal ini menciptakan konflik sosial dengan penduduk asli dan lokal dan mengarah pada kekerasan, kejahatan dan pelanggaran hak asasi manusia.
hutan Kuno telah berevolusi selama ribuan tahun ke habitat yang unik dan vital bagi jutaan jenis tumbuhan dan hewan. Mereka juga rumah bagi jutaan orang yang bergantung pada mereka untuk mata pencaharian mereka dan kelangsungan hidup.
Diperkirakan bahwa sekitar 1,6 milyar orang di seluruh dunia bergantung pada hutan untuk mata pencaharian dan 60 juta masyarakat adat bergantung pada hutan untuk subsisten mereka.
Klik pada gambar diatas untuk melihat perjalanan kayu ilegal dari hutan ke konsumen

Skala Soal

Antara Agustus 2003 dan 2004, laju deforestasi untuk Amazon, hutan tropis terbesar di dunia, adalah yang tertinggi kedua yang pernah dicatat. Seluas 26.130 kilometer persegi - sekitar ukuran Belgia - hancur, sebagian besar secara ilegal.
Contoh Harga Kayu Illegal Logging di Memproduksi Negara
  • Di Indonesia diperkirakan sampai 90 persen penebangan adalah ilegal.
  • Di Amazon Brazil diperkirakan bahwa 60-80 persen penebangan adalah ilegal.
  • Dalam Kamerun 50 persen dari penebangan antara 1999-2004 diperkirakan telah ilegal.

Pembalakan liar pendanaan kejahatan dan mendistorsi pasar

Pendapatan dari kegiatan illegal logging telah digunakan untuk mendanai perang saudara, kejahatan terorganisir dan pencucian uang, semua yang mengancam keamanan internasional.
Penebangan liar merusak perdagangan kayu legal dan dikelola dengan baik oleh perusahaan yang bertanggung jawab oleh bawah memotong harga dan membuatnya kurang kompetitif. Link ke dokumen dengan perusahaan sign up yang saya kirimkan melalui am?
Bank Dunia memperkirakan bahwa biaya penghasil kayu illegal logging negara antara US $ 10-15000000000 per tahun pendapatan hilang, akuntansi selama lebih dari sepersepuluh dari total perdagangan kayu di seluruh dunia, diperkirakan akan lebih dari US $ 150 miliar per tahun. Ini pendapatan yang hilang adalah sangat diperlukan untuk layanan publik yang sangat dibutuhkan seperti membangun sekolah dan rumah sakit.
Mengharapkan atau meminta satu negara untuk memerangi pembalakan liar sementara pada saat yang sama, menerima atau mengimpor kayu ilegal tidak mendukung upaya-upaya untuk memerangi kejahatan hutan ini .... Bahkan, memungkinkan impor dan perdagangan produk kayu ilegal bisa dianggap sebagai suatu tindakan untuk membantu atau bahkan untuk melakukan kejahatan hutan.
Muhammad Prakosa, Menteri Kehutanan Indonesia, Januari 2003.

Penyebab Soal

Lemahnya tata kelola dan korupsi di negara-negara penghasil kayu dan kegagalan pemerintah di negara-negara konsumen seperti Uni Eropa, AS dan Jepang untuk melarang impor kayu ilegal dan merusak login, memungkinkan perusahaan-perusahaan penebangan kayu yang tidak bermoral dan pedagang di seluruh dunia untuk mengeksploitasi hutan alam.
Peningkatan permintaan di seluruh dunia untuk produk kayu, terlepas dari legalitas mereka, adalah memicu kerusakan hutan. Misalnya Uni Eropa merupakan importir signifikan kayu dari daerah mana ilegal dan merusak logging merajalela.

Politik tindakan: tidak cukup untuk menyelamatkan hutan

Menakjubkan Uni Eropa tidak memiliki hukum untuk menghentikan impor kayu ilegal ke Eropa. Sebuah Rencana Aksi Uni Eropa Terhadap Penegakan Hukum Kehutanan Tata Kelola dan Perdagangan, yang dikenal sebagai FLEGT merekomendasikan pengembangan hukum, yang bisa termasuk melarang impor kayu ilegal. Sampai sekarang Komisi Eropa hanya mempromosikan tindakan sukarela, yang secara luas dianggap tidak cukup untuk melindungi hutan atau orang-orang yang bergantung pada mereka untuk mata pencaharian mereka. Ini tidak akan cukup untuk menyelamatkan hutan. Baca lebih lanjut

Alternatif untuk Perusakan Hutan

Alternatif untuk perusakan hutan meliputi sumber kayu dari hutan yang dikelola dengan baik dan The Forest Stewardship Council (FSC) .

Sistem Verifikasi Legalitas

Pasar untuk verifikasi legalitas produk kayu telah berkembang. Banyak sistem dan layanan telah dikembangkan untuk memeriksa, lisensi atau sertifikasi kayu legal.Kebutuhan untuk menilai dan memantau kredibilitas skema ini sangat penting dan Greenpeace telah mengambil tugas ini. ini penilaian , berdasarkan analisis desktop dan korespondensi langsung dengan's primer verifier dunia, kelas verifikasi legalitas sistem tujuh terhadap kriteria memberikan persyaratan penting minimum untuk memastikan kredibilitas.

PEMBALAKAN LIAR

Pembalakan liar atau penebangan liar (bahasa Inggris: illegal logging) adalah kegiatan penebangan, pengangkutan dan penjualan kayu yang tidak sah atau tidak memiliki izin dari otoritas setempat.
Walaupun angka penebangan liar yang pasti sulit didapatkan karena aktivitasnya yang tidak sah, beberapa sumber tepercaya mengindikasikan bahwa lebih dari setengah semua kegiatan penebangan liar di dunia terjadi di wilayah-wilayah daerah aliran sungai Amazon, Afrika Tengah, Asia Tenggara, Rusia dan beberapa negara-negara Balkan.

Fakta Penebangan Liar 

Dunia

Sebuah studi kerjasama antara Britania Raya dengan Indonesia pada 1998 mengindikasikan bahwa sekitar 40% dari seluruh kegiatan penebangan adalah liar, dengan nilai mencapai 365 juta dolar A.S.
Studi yang lebih baru membandingkan penebangan sah dengan konsumsi domestik ditambah dengan elspor mengindikasikan bahwa 88% dari seluruh kegiatan penebangan adalah merupakan penebangan liar.
Malaysia merupakan tempat transit utama dari produk kayu ilegal dari Indonesia.

Amerika

Di Brazil, 80% dari penebangan di Amazon melanggar ketentuan pemerintah. Korupsi menjadi pusat dari seluruh kegiatan penebangan ilegal tersebut.
Produk kayu di Brazil sering diistilahkan dengan "emas hijau" dikarenakan harganya yang mahal (Kayu mahogani berharga 1.600 dolar AS per meter kubiknya).
Mahogani ilegal membuka jalan bagi penebangan liar untuk spesies yang lain dan untuk eksploitasi yang lebih luas di Amazon.

Dampak Pembalakan Liar
Data yang dikeluarkan Bank Dunia menunjukkan bahwa sejak tahun 1985-1997 Indonesia telah kehilangan hutan sekitar 1,5 juta hektare setiap tahun dan diperkirakan sekitar 20 juta hutan produksi yang tersisa. Penebangan liar berkaitan dengan meningkatnya kebutuhan kayu di pasar internasional, besarnya kapasitas terpasang industri kayu dalam negeri, konsumsi lokal, lemahnya penegakan hukum, dan pemutihan kayu yang terjadi di luar kawasan tebangan.
Berdasarkan hasil analisis FWI dan GFW dalam kurun waktu 50 tahun, luas tutupan hutan Indonesia mengalami penurunan sekitar 40% dari total tutupan hutan di seluruh Indonesia. Dan sebagian besar, kerusakan hutan (deforestasi) di Indonesia akibat dari sistem politik dan ekonomi yang menganggap sumber daya hutan sebagai sumber pendapatan dan bisa dieksploitasi untuk kepentingan politik serta keuntungan pribadi.
Menurut data Kementrian Perhutanan tahun 2006, luas hutan yang rusak dan tidak dapat berfungsi optimal telah mencapai 59,6 juta hektar dari 120,35 juta hektare kawasan hutan di Indonesia, dengan laju deforestasi dalam lima tahun terakhir mencapai 2,83 juta hektare per tahun. Bila keadaan seperti ini dipertahankan, dimana Sumatera dan Kalimantan sudah kehilangan hutannya, maka hutan di Sulawesi dan Papua akan mengalami hal yang sama. Menurut analisis World Bank, hutan di Sulawesi diperkirakan akan hilang tahun 2010.
Praktek pembalakan liar dan eksploitasi hutan yang tidak mengindahkan kelestarian, mengakibatkan kehancuran sumber daya hutan yang tidak ternilai harganya, kehancuran kehidupan masyarakat dan kehilangan kayu senilai US$ 5 milyar, diantaranya berupa pendapatan negara kurang lebih US$1.4 milyar setiap tahun. Kerugian tersebut belum menghitung hilangnya nilai keanekaragaman hayati serta jasa-jasa lingkungan yang dapat dihasilkan dari sumber daya hutan.
Penelitian Greenpeace mencatat tingkat kerusakan hutan di Indonesia mencapai angka 3,8 juta hektare pertahun, yang sebagian besar disebabkan oleh aktivitas illegal logging atau penebangan liar (Johnston, 2004). Sedangkan data Badan Penelitian Departemen Kehutanan menunjukan angka Rp. 83 milyar perhari sebagai kerugian finansial akibat penebangan liar (Antara, 2004).

References Plant (1 - 6)

References

  1. ^ Haeckel G (1866). Generale Morphologie der Organismen. Berlin: Verlag von Georg Reimer. pp. vol.1: i–xxxii, 1–574, pls I–II; vol. 2: i–clx, 1–462, pls I–VIII. 
  2. ^ "plant[2 - Definition from the Merriam-Webster Online Dictionary"]. http://www.merriam-webster.com/dictionary/plant%5B2%5D. Retrieved 2009-03-25. 
  3. ^ "plant (life form) -- Britannica Online Encyclopedia". http://www.britannica.com/EBchecked/topic/463192/plant. Retrieved 2009-03-25. 
  4. ^ Margulis, L. (1974). "Five-kingdom classification and the origin and evolution of cells". Evolutionary Biology 7: 45–78. 
  5. ^ a b c d e Raven, Peter H., Ray F. Evert, & Susan E. Eichhorn, 2005. Biology of Plants, 7th edition. (New York: W. H. Freeman and Company). ISBN 0-7167-1007-2.
  6. ^ Bremer, K. (1985). "Summary of green plant phylogeny and classification". Cladistics 1: 369–385. doi:10.1111/j.1096-0031.1985.tb00434.x. 
  7. ^ Mishler, Brent D.; S. P. Churchill (1985). "Transition to a land flora: phylogenetic relationships of the green algae and bryophytes". Cladistics 1: 305–328. doi:10.1111/j.1096-0031.1985.tb00431.x. 
  8. ^ Mishler, Brent D.; Louise A. Lewis; Mark A. Buchheim; Karen S. Renzaglia; D. J. Garbary; Carl F. Delwiche; F. W. Zechman; T. S. Kantz; & Ron L. Chapman (1994). "Phylogenetic relationships of the "green algae" and "bryophytes"". Annals of the Missouri Botanical Garden (Annals of the Missouri Botanical Garden, Vol. 81, No. 3) 81 (3): 451–483. doi:10.2307/2399900. http://jstor.org/stable/2399900. 
  9. ^ Van den Hoek, C., D. G. Mann, & H. M. Jahns, 1995. Algae: An Introduction to Phycology. pages 343, 350, 392, 413, 425, 439, & 448 (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  10. ^ Van den Hoek, C., D. G. Mann, & H. M. Jahns, 1995. Algae: An Introduction to Phycology. pages 457, 463, & 476. (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  11. ^ Crandall-Stotler, Barbara. & Stotler, Raymond E., 2000. "Morphology and classification of the Marchantiophyta". page 21 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press). ISBN 0-521-66097-1
  12. ^ Schuster, Rudolf M., The Hepaticae and Anthocerotae of North America, volume VI, pages 712-713. (Chicago: Field Museum of Natural History, 1992). ISBN 0-914-86821-7.
  13. ^ Goffinet, Bernard; William R. Buck (2004). "Systematics of the Bryophyta (Mosses): From molecules to a revised classification". Monographs in Systematic Botany (Missouri Botanical Garden Press) 98: 205–239. 
  14. ^ Gifford, Ernest M. & Adriance S. Foster, 1988. Morphology and Evolution of Vascular Plants, 3rd edition, page 358. (New York: W. H. Freeman and Company). ISBN 0-7167-1946-0.
  15. ^ Taylor, Thomas N. & Edith L. Taylor, 1993. The Biology and Evolution of Fossil Plants, page 636. (New Jersey: Prentice-Hall). ISBN 0-13-651589-4.
  16. ^ International Union for Conservation of Nature and Natural Resources, 2006. IUCN Red List of Threatened Species:Summary Statistics
  17. ^ "The oldest fossils reveal evolution of non-vascular plants by the middle to late Ordovician Period (~450-440 m.y.a.) on the basis of fossil spores" Transition of plants to land
  18. ^ Rothwell, G. W.; Scheckler, S. E.; Gillespie, W. H. (1989). "Elkinsia gen. nov., a Late Devonian gymnosperm with cupulate ovules". Botanical Gazette 150: 170–189. 
  19. ^ Kenrick, Paul & Peter R. Crane. 1997. The Origin and Early Diversification of Land Plants: A Cladistic Study. (Washington, D.C.: Smithsonian Institution Press). ISBN 1-56098-730-8.
  20. ^ Smith, Alan R., Kathleen M. Pryer, E. Schuettpelz, P. Korall, H. Schneider, & Paul G. Wolf. (2006). "A classification for extant ferns". Taxon 55(3): 705-731.
  21. ^ a b Robbins, W.W., Weier, T.E., et al., Botany:Plant Science, 3rd edition , Wiley International, New York, 1965.
  22. ^ Goyal, K., Walton, L. J., & Tunnacliffe, A. (2005). "LEA proteins prevent protein aggregation due to water stress". Biochemical Journal 388 (Part 1): 151–157. doi:10.1042/BJ20041931. PMC 1186703. PMID 15631617. Archived from the original on 2009-08-03. http://www.webcitation.org/5il9QhYT0. 
  23. ^ a b Campbell, Reece, Biology, 7th edition, Pearson/Benjamin Cummings, 2005.
  24. ^ BBC Report
  25. ^ Howard Frank, Bromeliad Phytotelmata, October 2000
  26. ^ Barthlott, W., S. Porembski, R. Seine, and I. Theisen. 2007. The Curious World of Carnivorous Plants: A Comprehensive Guide to Their Biology and Cultivation. Timber Press: Portland, Oregon.
  27. ^ "cocaine/crack". http://www.urban75.com/Drugs/drugcoke.html. 
  28. ^ "Deaths related to cocaine". http://ar2005.emcdda.europa.eu/en/page050-en.html. 
  29. ^ "Illegal drugs drain $160 billion a year from American economy". Archived from the original on 2008-02-15. http://web.archive.org/web/20080215071055/http://www.whitehousedrugpolicy.gov/NEWS/press02/012302.html. 
  30. ^ "The social cost of illegal drug consumption in Spain". http://www.ingentaconnect.com/content/bsc/add/2002/00000097/00000009/art00012.

Plants (6)

Nonfood products

Wood is used for buildings, furniture, paper, cardboard, musical instruments and sports equipment. Cloth is often made from cotton, flax or synthetic fibers derived from cellulose, such as rayon and acetate. Renewable fuels from plants include firewood, peat and many other biofuels. Coal and petroleum are fossil fuels derived from plants. Medicines derived from plants include aspirin, taxol, morphine, quinine, reserpine, colchicine, digitalis and vincristine. There are hundreds of herbal supplements such as ginkgo, Echinacea, feverfew, and Saint John's wort. Pesticides derived from plants include nicotine, rotenone, strychnine and pyrethrins. Drugs obtained from plants include opium, cocaine and marijuana. Poisons from plants include ricin, hemlock and curare. Plants are the source of many natural products such as fibers, essential oils, natural dyes, pigments, waxes, tannins, latex, gums, resins, alkaloids, amber and cork. Products derived from plants include soaps, paints, shampoos, perfumes, cosmetics, turpentine, rubber, varnish, lubricants, linoleum, plastics, inks, chewing gum and hemp rope. Plants are also a primary source of basic chemicals for the industrial synthesis of a vast array of organic chemicals. These chemicals are used in a vast variety of studies and experiments.

Aesthetic uses

Thousands of plant species are cultivated for aesthetic purposes as well as to provide shade, modify temperatures, reduce wind, abate noise, provide privacy, and prevent soil erosion. People use cut flowers, dried flowers and houseplants indoors or in greenhouses. In outdoor gardens, lawn grasses, shade trees, ornamental trees, shrubs, vines, herbaceous perennials and bedding plants are used. Images of plants are often used in art, architecture, humor, language, and photography and on textiles, money, stamps, flags and coats of arms. Living plant art forms include topiary, bonsai, ikebana and espalier. Ornamental plants have sometimes changed the course of history, as in tulipomania. Plants are the basis of a multi-billion dollar per year tourism industry which includes travel to arboretums, botanical gardens, historic gardens, national parks, tulip festivals, rainforests, forests with colorful autumn leaves and the National Cherry Blossom Festival. Venus Flytrap, sensitive plant and resurrection plant are examples of plants sold as novelties.

Scientific and cultural uses

Tree rings are an important method of dating in archeology and serve as a record of past climates. Basic biological research has often been done with plants, such as the pea plants used to derive Gregor Mendel's laws of genetics. Space stations or space colonies may one day rely on plants for life support. Plants are used as national and state emblems, including state trees and state flowers. Ancient trees are revered and many are famous. Numerous world records are held by plants. Plants are often used as memorials, gifts and to mark special occasions such as births, deaths, weddings and holidays. Plants figure prominently in mythology, religion and literature. The field of ethnobotany studies plant use by indigenous cultures which helps to conserve endangered species as well as discover new medicinal plants. Gardening is the most popular leisure activity in the U.S. Working with plants or horticulture therapy is beneficial for rehabilitating people with disabilities. Certain plants contain psychotropic chemicals which are extracted and ingested, including tobacco, cannabis (marijuana), and opium.

Negative effects

Weeds are plants that grow where people do not want them. People have spread plants beyond their native ranges and some of these introduced plants become invasive, damaging existing ecosystems by displacing native species. Invasive plants cause billions of dollars in crop losses annually by displacing crop plants, they increase the cost of production and the use of chemical means to control them affects the environment.
Plants may cause harm to people and animals. Plants that produce windblown pollen invoke allergic reactions in people who suffer from hay fever. A wide variety of plants are poisonous to people and/or animals. Toxalbumins are plant poisons fatal to most mammals and act as a serious deterrent to consumption. Several plants cause skin irritations when touched, such as poison ivy. Certain plants contain psychotropic chemicals, which are extracted and ingested or smoked, including tobacco, cannabis (marijuana), cocaine and opium. Smoking causes damage to health or even death, while some drugs may also be harmful or fatal to people[27][28]. Both illegal and legal drugs derived from plants may have negative effects on the economy, affecting worker productivity and law enforcement costs.[29][30] Some plants cause allergic reactions in people and animals when ingested, while other plants cause food intolerances that negatively affect health.

Plants (5)

Ecology

The photosynthesis conducted by land plants and algae is the ultimate source of energy and organic material in nearly all ecosystems. Photosynthesis radically changed the composition of the early Earth's atmosphere, which as a result is now 21% oxygen. Animals and most other organisms are aerobic, relying on oxygen; those that do not are confined to relatively rare anaerobic environments. Plants are the primary producers in most terrestrial ecosystems and form the basis of the food web in those ecosystems. Many animals rely on plants for shelter as well as oxygen and food.
Land plants are key components of the water cycle and several other biogeochemical cycles. Some plants have coevolved with nitrogen fixing bacteria, making plants an important part of the nitrogen cycle. Plant roots play an essential role in soil development and prevention of soil erosion.

Distribution

Plants are distributed worldwide in varying numbers. While they inhabit a multitude of biomes and ecoregions, few can be found beyond the tundras at the northernmost regions of continental shelves. At the southern extremes, plants have adapted tenaciously to the prevailing conditions. (See Antarctic flora.)
Plants are often the dominant physical and structural component of habitats where they occur. Many of the Earth's biomes are named for the type of vegetation because plants are the dominant organisms in those biomes, such as grasslands and forests.

Ecological relationships


The Venus flytrap, a species of carnivorous plant.
Numerous animals have coevolved with plants. Many animals pollinate flowers in exchange for food in the form of pollen or nectar. Many animals disperse seeds, often by eating fruit and passing the seeds in their feces. Myrmecophytes are plants that have coevolved with ants. The plant provides a home, and sometimes food, for the ants. In exchange, the ants defend the plant from herbivores and sometimes competing plants. Ant wastes provide organic fertilizer.
The majority of plant species have various kinds of fungi associated with their root systems in a kind of mutualistic symbiosis known as mycorrhiza. The fungi help the plants gain water and mineral nutrients from the soil, while the plant gives the fungi carbohydrates manufactured in photosynthesis. Some plants serve as homes for endophytic fungi that protect the plant from herbivores by producing toxins. The fungal endophyte, Neotyphodium coenophialum, in tall fescue (Festuca arundinacea) does tremendous economic damage to the cattle industry in the U.S.
Various forms of parasitism are also fairly common among plants, from the semi-parasitic mistletoe that merely takes some nutrients from its host, but still has photosynthetic leaves, to the fully parasitic broomrape and toothwort that acquire all their nutrients through connections to the roots of other plants, and so have no chlorophyll. Some plants, known as myco-heterotrophs, parasitize mycorrhizal fungi, and hence act as epiparasites on other plants.
Many plants are epiphytes, meaning they grow on other plants, usually trees, without parasitizing them. Epiphytes may indirectly harm their host plant by intercepting mineral nutrients and light that the host would otherwise receive. The weight of large numbers of epiphytes may break tree limbs. Hemiepiphytes like the strangler fig begin as epiphytes but eventually set their own roots and overpower and kill their host. Many orchids, bromeliads, ferns and mosses often grow as epiphytes. Bromeliad epiphytes accumulate water in leaf axils to form phytotelmata, complex aquatic food webs.[25]
Approximately 630 plants are carnivorous, such as the Venus Flytrap (Dionaea muscipula) and sundew (Drosera species). They trap small animals and digest them to obtain mineral nutrients, especially nitrogen and phosphorus.[26]

Importance


Potato plant. Potatoes spread to the rest of the world after European contact with the Americas in the late 15th and early 16th centuries and have since become an important field crop.

Timber in storage for later processing at a sawmill.

A section of a Yew branch showing 27 annual growth rings, pale sapwood and dark heartwood, and pith (centre dark spot). The dark radial lines are longitudinal sections of small branches which became included by growth of the tree.
The study of plant uses by people is termed economic botany or ethnobotany; some consider economic botany to focus on modern cultivated plants, while ethnobotany focuses on indigenous plants cultivated and used by native peoples. Human cultivation of plants is part of agriculture, which is the basis of human civilization. Plant agriculture is subdivided into agronomy, horticulture and forestry.

Food

Much of human nutrition depends on land plants, either directly or indirectly.
Human nutrition depends to a large extent on cereals, especially maize (or corn), wheat and rice. Other staple crops include potato, cassava, and legumes. Human food also includes vegetables, spices, and certain fruits, nuts, herbs, and edible flowers.
Beverages produced from plants include coffee, tea, wine, beer and alcohol.
Sugar is obtained mainly from sugar cane and sugar beet.
Cooking oils and margarine come from maize, soybean, rapeseed, safflower, sunflower, olive and others.
Livestock animals including cows, pigs, sheep, and goats are all herbivores; and feed primarily or entirely on cereal plants, particularly grasses.

Plants (4)

Structure, growth, and development

Most of the solid material in a plant is taken from the atmosphere. Through a process known as photosynthesis, most plants use the energy in sunlight to convert carbon dioxide from the atmosphere, plus water, into simple sugars. Parasitic plants, on the other hand, use the resources of its host to grow. These sugars are then used as building blocks and form the main structural component of the plant. Chlorophyll, a green-colored, magnesium-containing pigment is essential to this process; it is generally present in plant leaves, and often in other plant parts as well.
Plants usually rely on soil primarily for support and water (in quantitative terms), but also obtain compounds of nitrogen, phosphorus, and other crucial elemental nutrients. Epiphytic and lithophytic plants often depend on rainwater or other sources for nutrients and carnivorous plants supplement their nutrient requirements with insect prey that they capture. For the majority of plants to grow successfully they also require oxygen in the atmosphere and around their roots for respiration. However, some plants grow as submerged aquatics, using oxygen dissolved in the surrounding water, and a few specialized vascular plants, such as mangroves, can grow with their roots in anoxic conditions.

The leaf is usually the primary site of photosynthesis in plants.

There is no photosynthesis in deciduous leaves in autumn.

Factors affecting growth

The genotype of a plant affects its growth. For example, selected varieties of wheat grow rapidly, maturing within 110 days, whereas others, in the same environmental conditions, grow more slowly and mature within 155 days.[21]
Growth is also determined by environmental factors, such as temperature, available water, available light, and available nutrients in the soil. Any change in the availability of these external conditions will be reflected in the plants growth.
Biotic factors are also capable of affecting plant growth. Plants compete with other plants for space, water, light and nutrients. Plants can be so crowded that no single individual produces normal growth, causing etiolation and chlorosis. Optimal plant growth can be hampered by grazing animals, suboptimal soil composition, lack of mycorrhizal fungi, and attacks by insects or plant diseases, including those caused by bacteria, fungi, viruses, and nematodes.[21]
Simple plants like algae may have short life spans as individuals, but their populations are commonly seasonal. Other plants may be organized according to their seasonal growth pattern: annual plants live and reproduce within one growing season, biennial plants live for two growing seasons and usually reproduce in second year, and perennial plants live for many growing seasons and continue to reproduce once they are mature. These designations often depend on climate and other environmental factors; plants that are annual in alpine or temperate regions can be biennial or perennial in warmer climates. Among the vascular plants, perennials include both evergreens that keep their leaves the entire year, and deciduous plants which lose their leaves for some part of it. In temperate and boreal climates, they generally lose their leaves during the winter; many tropical plants lose their leaves during the dry season.
The growth rate of plants is extremely variable. Some mosses grow less than 0.001 millimeters per hour (mm/h), while most trees grow 0.025-0.250 mm/h. Some climbing species, such as kudzu, which do not need to produce thick supportive tissue, may grow up to 12.5 mm/h.

Dried dead plants
Plants protect themselves from frost and dehydration stress with antifreeze proteins, heat-shock proteins and sugars (sucrose is common). LEA (Late Embryogenesis Abundant) protein expression is induced by stresses and protects other proteins from aggregation as a result of desiccation and freezing.[22]

Plant cell


Plant cell structure
Plant cells are typically distinguished by their large water-filled central vacuole, chloroplasts, and rigid cell walls that are made up of cellulose, hemicellulose, and pectin. Cell division is also characterized by the development of a phragmoplast for the construction of a cell plate in the late stages of cytokinesis. Just as in animals, plant cells differentiate and develop into multiple cell types. Totipotent meristematic cells can differentiate into vascular, storage, protective (e.g. epidermal layer), or reproductive tissues, with more primitive plants lacking some tissue types.[23]

Physiology

Photosynthesis

Plants are photosynthetic, which means that they manufacture their own food molecules using energy obtained from light. The primary mechanism plants have for capturing light energy is the pigment chlorophyll. All green plants contain two forms of chlorophyll, chlorophyll a and chlorophyll b. The latter of these pigments is not found in red or brown algae.

Immune system

By means of cells that behave like nerves, plants receive and distribute within their systems information about incident light intensity and quality. Incident light which stimulates a chemical reaction in one leaf, will cause a chain reaction of signals to the entire plant via a type of cell termed a "bundle sheath cell". Researchers from the Warsaw University of Life Sciences in Poland, found that plants have a specific memory for varying light conditions which prepares their immune systems against seasonal pathogens.[24]

Internal distribution

Vascular plants differ from other plants in that they transport nutrients between different parts through specialized structures, called xylem and phloem. They also have roots for taking up water and minerals. The xylem moves water and minerals from the root to the rest of the plant, and the phloem provides the roots with sugars and other nutrient produced by the leaves.[23]

Plants (3)

A proposed phylogenetic tree of Plantae, after Kenrick and Crane,[19] is as follows, with modification to the Pteridophyta from Smith et al.[20] The Prasinophyceae may be a paraphyletic basal group to all green plants.


Prasinophyceae (micromonads)


Streptobionta

Embryophytes

Stomatophytes

Polysporangiates

Tracheophytes
Eutracheophytes
Euphyllophytina
Lignophytia

Spermatophytes (seed plants)


Progymnospermophyta †


Pteridophyta


Pteridopsida (true ferns)


Marattiopsida


Equisetopsida (horsetails)


Psilotopsida (whisk ferns & adders'-tongues)


Cladoxylopsida †




Lycophytina

Lycopodiophyta


Zosterophyllophyta †




Rhyniophyta †




Aglaophyton †


Horneophytopsida †




Bryophyta (mosses)


Anthocerotophyta (hornworts)




Marchantiophyta (liverworts)




Charophyta




Chlorophyta


Trebouxiophyceae (Pleurastrophyceae)


Chlorophyceae



Ulvophyceae




Embryophytes

The plants that are likely most familiar to us are the multicellular land plants, called embryophytes. They include the vascular plants, plants with full systems of leaves, stems, and roots. They also include a few of their close relatives, often called bryophytes, of which mosses and liverworts are the most common.
All of these plants have eukaryotic cells with cell walls composed of cellulose, and most obtain their energy through photosynthesis, using light and carbon dioxide to synthesize food. About three hundred plant species do not photosynthesize but are parasites on other species of photosynthetic plants. Plants are distinguished from green algae, which represent a mode of photosynthetic life similar to the kind modern plants are believed to have evolved from, by having specialized reproductive organs protected by non-reproductive tissues.
Bryophytes first appeared during the early Paleozoic. They can only survive where moisture is available for significant periods, although some species are desiccation tolerant. Most species of bryophyte remain small throughout their life-cycle. This involves an alternation between two generations: a haploid stage, called the gametophyte, and a diploid stage, called the sporophyte. The sporophyte is short-lived and remains dependent on its parent gametophyte.
Vascular plants first appeared during the Silurian period, and by the Devonian had diversified and spread into many different land environments. They have a number of adaptations that allowed them to overcome the limitations of the bryophytes. These include a cuticle resistant to desiccation, and vascular tissues which transport water throughout the organism. In most the sporophyte acts as a separate individual, while the gametophyte remains small.
The first primitive seed plants, Pteridosperms (seed ferns) and Cordaites, both groups now extinct, appeared in the late Devonian and diversified through the Carboniferous, with further evolution through the Permian and Triassic periods. In these the gametophyte stage is completely reduced, and the sporophyte begins life inside an enclosure called a seed, which develops while on the parent plant, and with fertilisation by means of pollen grains. Whereas other vascular plants, such as ferns, reproduce by means of spores and so need moisture to develop, some seed plants can survive and reproduce in extremely arid conditions.
Early seed plants are referred to as gymnosperms (naked seeds), as the seed embryo is not enclosed in a protective structure at pollination, with the pollen landing directly on the embryo. Four surviving groups remain widespread now, particularly the conifers, which are dominant trees in several biomes. The angiosperms, comprising the flowering plants, were the last major group of plants to appear, emerging from within the gymnosperms during the Jurassic and diversifying rapidly during the Cretaceous. These differ in that the seed embryo (angiosperm) is enclosed, so the pollen has to grow a tube to penetrate the protective seed coat; they are the predominant group of flora in most biomes today.

Fossils


A petrified log in Petrified Forest National Park.
Plant fossils include roots, wood, leaves, seeds, fruit, pollen, spores, phytoliths, and amber (the fossilized resin produced by some plants). Fossil land plants are recorded in terrestrial, lacustrine, fluvial and nearshore marine sediments. Pollen, spores and algae (dinoflagellates and acritarchs) are used for dating sedimentary rock sequences. The remains of fossil plants are not as common as fossil animals, although plant fossils are locally abundant in many regions worldwide.
The earliest fossils clearly assignable to Kingdom Plantae are fossil green algae from the Cambrian. These fossils resemble calcified multicellular members of the Dasycladales. Earlier Precambrian fossils are known which resemble single-cell green algae, but definitive identity with that group of algae is uncertain.
The oldest known fossils of embryophytes date from the Ordovician, though such fossils are fragmentary. By the Silurian, fossils of whole plants are preserved, including the lycophyte Baragwanathia longifolia. From the Devonian, detailed fossils of rhyniophytes have been found. Early fossils of these ancient plants show the individual cells within the plant tissue. The Devonian period also saw the evolution of what many believe to be the first modern tree, Archaeopteris. This fern-like tree combined a woody trunk with the fronds of a fern, but produced no seeds.
The Coal measures are a major source of Paleozoic plant fossils, with many groups of plants in existence at this time. The spoil heaps of coal mines are the best places to collect; coal itself is the remains of fossilised plants, though structural detail of the plant fossils is rarely visible in coal. In the Fossil Forest at Victoria Park in Glasgow, Scotland, the stumps of Lepidodendron trees are found in their original growth positions.
The fossilized remains of conifer and angiosperm roots, stems and branches may be locally abundant in lake and inshore sedimentary rocks from the Mesozoic and Cenozoic eras. Sequoia and its allies, magnolia, oak, and palms are often found.
Petrified wood is common in some parts of the world, and is most frequently found in arid or desert areas where it is more readily exposed by erosion. Petrified wood is often heavily silicified (the organic material replaced by silicon dioxide), and the impregnated tissue is often preserved in fine detail. Such specimens may be cut and polished using lapidary equipment. Fossil forests of petrified wood have been found in all continents.
Fossils of seed ferns such as Glossopteris are widely distributed throughout several continents of the Southern Hemisphere, a fact that gave support to Alfred Wegener's early ideas regarding Continental drift theory.